Are You Interested in Online or Offline Learning and Counselling? Contact Us: 990 5050 159 | 700 41 500 94

Knowledge Bank

CAT 2017 Algebra – Previous Year Questions with Detailed Solutions

Algebra
Algebra / CAT / QUANT / Question Bank

CAT 2017 Algebra – Previous Year Questions with Detailed Solutions

CAT 2017 Algebra Questions with Solutions – Previous Year Questions

CAT 2017 Algebra – Previous Year Questions with Detailed Solutions

Prepare for CAT Algebra with actual questions from CAT 2017. Below are all Algebra PYQs with clear, concise solutions and explanations. These questions test your grasp of equations, functions, identities, and inequalities — key concepts for CAT Quantitative Aptitude.

CAT Previous Years' Algebra Questions – Practice Set

CAT Previous Years' Algebra Questions CAT 2017

Click on the toggle to view correct answers. Curated by Azucation.


CAT 2017 Algebra - Q1) If \(a\) and \(b\) are integers of opposite signs such that \((a + 3)^2 : b^2 = 9 : 1\) and \((a - 1)^2 : (b - 1)^2 = 4 : 1\), then the ratio \(a^2 : b^2\) is:

  • (a) 9 : 4
  • (b) 81 : 4
  • (c) 1 : 4
  • (d) 25 : 4
🔽 Show Answer

Answer: 25 : 4

CAT 2017 Algebra - Q2) The area of the closed region bounded by the equation \(|x| + |y| = 2\) in the two-dimensional plane is:

  • (a) \(4\pi\) sq. units
  • (b) 4 sq. units
  • (c) 8 sq. units
  • (d) \(2\pi\) sq. units
🔽 Show Answer

Answer: 8 sq. units

CAT 2017 Algebra - Q3) Suppose, \(\log_3 x = \log_{12} y = a\), where \(x, y\) are positive numbers. If \(G\) is the geometric mean of \(x\) and \(y\), then \(\log_6 G\) is equal to:

  • (a) \(\sqrt{a}\)
  • (b) \(2a\)
  • (c) \(a/2\)
  • (d) \(a\)
🔽 Show Answer

Answer: a

CAT 2017 Algebra - Q4) If \(x + 1 = x^2\) and \(x > 0\), then the value of \(2x^4\) is:

  • (a) \(6 + 4\sqrt{5}\)
  • (b) \(3 + 3\sqrt{5}\)
  • (c) \(5 + 3\sqrt{5}\)
  • (d) \(7 + 3\sqrt{5}\)
🔽 Show Answer

Answer: 7 + 3\sqrt{5}


🔔 For full video solutions, subscribe to AzuCATion

CAT 2017 Algebra - Q5) The value of \[ \log_{0.008} \sqrt{5} + \log_{\sqrt{3}} 81 - 7 \] is equal to:

  • (a) \( \frac{1}{3} \)
  • (b) \( \frac{2}{3} \)
  • (c) \( \frac{5}{6} \)
  • (d) \( \frac{7}{6} \)
🔽 Show Answer

Answer: \(\frac{5}{6}\)

CAT 2017 Algebra - Q6) If \[ 9^{2x - 1} - 81^{x - 1} = 1944, \] then \(x\) is:

  • (a) 3
  • (b) \( \frac{9}{4} \)
  • (c) \( \frac{4}{9} \)
  • (d) \( \frac{1}{3} \)
🔽 Show Answer

Answer: \(\frac{9}{4}\)

CAT 2017 Algebra - Q7) The number of solutions \((x, y, z)\) to the equation \[ x - y - z = 25, \] where \(x, y, z\) are positive integers such that \(x \leq 40\), \(y \leq 12\), and \(z \leq 12\), is:

  • (a) 101
  • (b) 99
  • (c) 87
  • (d) 105
🔽 Show Answer

Answer: 99

CAT 2017 Algebra - Q8) For how many integers \(n\), will the inequality \[ (n - 5)(n - 10) - 3(n - 2) \leq 0 \] be satisfied?

🔽 Show Answer

Answer: 11

CAT 2017 Algebra - Q9) If \(f_1(x) = x^2 + 11x + n\) and \(f_2(x) = x\), then the largest positive integer \(n\) for which the equation \[ f_1(x) = f_2(x) \] has two distinct real roots is:

🔽 Show Answer

Answer: 24

CAT 2017 Algebra - Q10) If \(a, b, c,\) and \(d\) are integers such that \(a + b + c + d = 30\), then the minimum possible value of \[ (a - b)^2 + (a - c)^2 + (a - d)^2 \] is:

🔽 Show Answer

Answer: 2

CAT 2017 Algebra - Q11) The shortest distance of the point \[ \left(\frac{1}{2}, 1\right) \] from the curve \[ y = |x - 1| + |x + 1| \] is:

  • (a) 1
  • (b) 0
  • (c) \(\sqrt{2}\)
  • (d) \(\sqrt{\frac{3}{2}}\)
🔽 Show Answer

Answer: 1

CAT 2017 Algebra - Q12) If \[ f(x) = \frac{5x + 2}{3x - 5} \quad \text{and} \quad g(x) = x^2 - 2x - 1, \] then the value of \[ g(f(f(3))) \] is:

  • (a) 2
  • (b) \(\frac{1}{3}\)
  • (c) 6
  • (d) \(\frac{2}{3}\)
🔽 Show Answer

Answer: 2

CAT 2017 Algebra - Q13) Let \(a_1, a_2, \ldots, a_{3n}\) be an arithmetic progression with \(a_1 = 3\) and \(a_2 = 7\). If \[ a_1 + a_2 + \ldots + a_{3n} = 1830, \] then what is the smallest positive integer \(m\) such that \[ m(a_1 + a_2 + \ldots + a_n) > 1830? \]

  • (a) 8
  • (b) 9
  • (c) 10
  • (d) 11
🔽 Show Answer

Answer: 9

CAT 2017 Algebra - Q14) If \(a, b, c\) are three positive integers such that \(a : b = 3 : 4\) and \(b : c = 2 : 1\), then which one of the following is a possible value of \(a + b + c\)?

  • (a) 201
  • (b) 205
  • (c) 207
  • (d) 210
🔽 Show Answer

Answer: 207

CAT 2017 Algebra - Q15) If the product of three consecutive positive integers is 15600, then the sum of the squares of these integers is:

  • (a) 1777
  • (b) 1785
  • (c) 1875
  • (d) 1877
🔽 Show Answer

Answer: 1877

CAT 2017 Algebra - Q16) If \(x\) is a real number such that \[ \log_3 5 = \log_5 (2 + x), \] then which of the following is true?

  • (a) \(0 < x < 3\)
  • (b) \(23 < x < 30\)
  • (c) \(x > 30\)
  • (d) \(3 < x < 23\)
🔽 Show Answer

Answer: 3 < x < 23

CAT 2017 Algebra - Q17) Let \(f(x) = x^2\) and \(g(x) = 2^x\) for all real \(x\). Then the value of \[ f[f(g(x)) + g(f(x))] \text{ at } x = 1 \] is:

  • (a) 16
  • (b) 18
  • (c) 36
  • (d) 40
🔽 Show Answer

Answer: 36

CAT 2017 Algebra - Q18) The minimum possible value of the sum of the squares of the roots of the equation \[ x^2 + (a + 3)x - (a + 5) = 0 \] is:

  • (a) 1
  • (b) 2
  • (c) 3
  • (d) 4
🔽 Show Answer

Answer: 3

CAT 2017 Algebra - Q19) If \[ 9^{x - \frac{1}{2}} - 2^{2x - 2} = 4^x - 3^{2x - 3}, \] then \(x\) is:

  • (a) \( \frac{3}{2} \)
  • (b) \( \frac{2}{5} \)
  • (c) \( \frac{3}{4} \)
  • (d) \( \frac{4}{9} \)
🔽 Show Answer

Answer: \(\frac{3}{2}\)

CAT 2017 Algebra - Q20) If \[ \log(2^a \cdot 3^b \cdot 5^c) \] is the arithmetic mean of \[ \log(2^2 \cdot 3^3 \cdot 5),\quad \log(2^6 \cdot 3 \cdot 5^7),\quad \text{and} \quad \log(2 \cdot 3^2 \cdot 5^4), \] then \(a\) equals:

🔽 Show Answer

Answer: 3

CAT 2017 Algebra - Q21) Let \(a_1, a_2, a_3, a_4, a_5\) be a sequence of five consecutive odd numbers. Consider a new sequence of five consecutive even numbers ending with \(2a_3\). If the sum of the numbers in the new sequence is 450, then \(a_5\) is:

🔽 Show Answer

Answer: 51

CAT 2017 Algebra - Q22) How many different pairs \((a, b)\) of positive integers are there such that \(a \geq b\) and \[ \frac{1}{a} + \frac{1}{b} = \frac{1}{6}? \]

🔽 Show Answer

Answer: 5

CAT 2017 Algebra - Q23) If \(f(ab) = f(a)f(b)\) for all positive integers \(a\) and \(b\), then the largest possible value of \(f(1)\) is:

🔽 Show Answer

Answer: 1

CAT 2017 Algebra - Q24) Let \(f(x) = 2x - 5\) and \(g(x) = 7 - 2x\). Then \(|f(x)+g(x)| = |f(x)| + |g(x)|\) if and only if:

  • (a) \(\frac{5}{2} < x < \frac{7}{2}\)
  • (b) \(x \leq \frac{5}{2}\) or \(x \geq \frac{7}{2}\)
  • (c) \(x < \frac{5}{2}\) or \(x > \frac{7}{2}\)
  • (d) \(\frac{5}{2} \leq x \leq \frac{7}{2}\)
🔽 Show Answer

Answer: \(\frac{5}{2} \leq x \leq \frac{7}{2}\)

CAT 2017 Algebra - Q25) An infinite geometric progression \(a_1, a_2, \dots\) has the property that \[ a_n = 3(a_{n+1} + a_{n+2} + \ldots) \] for every \(n \geq 1\). If the sum \(a_1 + a_2 + a_3 + \dots = 32\), then \(a_5\) is:

  • (a) \(\frac{1}{32}\)
  • (b) \(\frac{2}{32}\)
  • (c) \(\frac{3}{32}\)
  • (d) \(\frac{4}{32}\)
🔽 Show Answer

Answer: \(\frac{3}{32}\)

CAT 2017 Algebra - Q26) If \[ a_1 = \frac{1}{2 \times 5},\quad a_2 = \frac{1}{5 \times 8},\quad a_3 = \frac{1}{8 \times 11}, \ldots, \] then \[ a_1 + a_2 + a_3 + \ldots + a_{100} \] is:

  • (a) \(\frac{25}{151}\)
  • (b) \(\frac{1}{2}\)
  • (c) \(\frac{1}{4}\)
  • (d) \(\frac{111}{55}\)
🔽 Show Answer

Answer: \(\frac{25}{151}\)