Are You Interested in Online or Offline Learning and Counselling? Contact Us: 990 5050 159 | 700 41 500 94

FGP Trick: Fibonacci over Powers

FGP Trick: Fibonacci over Powers

FGP Trick: Fibonacci over Powers — 15N in 1 step | AzuCATion

Fibonacci over Powers (FGP) — Multiply–Shift Trick

CAT • XAT • ~6–8 min

FGP Geometric + Fibonacci Shortcut + Proof

🧩 Concept

Consider \(N=\dfrac{1}{3}+\dfrac{1}{3^{2}}+\dfrac{2}{3^{3}}+\dfrac{3}{3^{4}}+\dfrac{5}{3^{5}}+\dots\) where numerators follow Fibonacci \(1,1,2,3,5,\dots\).

Goal: compute \(15N\) lightning-fast.

⚡ Shortcut (multiply & add)

  1. Write \(N\) and \(3N\):
    \(N=\frac{1}{3}+\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+\cdots\)
    \(3N=1+\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\cdots\)
  2. Multiply again: \(9N=3+1+\frac{2}{3}+\frac{3}{3^2}+\cdots\)
  3. After constants, each numerator matches the sum of the previous two ⇒ the tail of \(9N\) equals \((N+3N)\).
Hence \(9N=3+(N+3N)\Rightarrow 5N=3\Rightarrow N=\dfrac{3}{5}\) ⇒ \(15N=9\).

📐 Generator Check (1 line)

Since \( \sum_{n\ge1}F_n x^n=\dfrac{x}{1-x-x^2}\), take \(x=\tfrac13\): \(N=\dfrac{\tfrac13}{1-\tfrac13-\tfrac19}=\dfrac{3}{5}\) (confirms the shortcut).

🧪 Base-4 Variant

Evaluate \(S=\dfrac{1}{4^{2}}+\dfrac{1}{4^{3}}+\dfrac{2}{4^{4}}+\dfrac{3}{4^{5}}+\cdots\).

Let \(T=\sum_{n\ge1}\dfrac{F_n}{4^n}=\dfrac{\tfrac14}{1-\tfrac14-\tfrac1{16}}=\dfrac{4}{11}\). Then \(S=\dfrac14 T=\dfrac{1}{11}\).

📝 Quick Quiz

Let \(N'=\dfrac{1}{4}+\dfrac{1}{4^{2}}+\dfrac{2}{4^{3}}+\dfrac{3}{4^{4}}+\cdots\) (Fibonacci over powers of 4). What is \(11N'\)?

🎥 Video Walkthrough

© AzuCATion | Maths by Amiya — Free CAT concepts library