Are You Interested In Online Learning? Contact Us: 7004150094, 9905050159

Knowledge Bank

Algebra 15 Questions Practice Set 2 [16-30] – Must Practice Set for CAT, XAT; Other MBA Exams

Algebra
Algebra / CAT / QUANT / Question Bank

Algebra 15 Questions Practice Set 2 [16-30] – Must Practice Set for CAT, XAT; Other MBA Exams

Algebra Practice – Full Set

Algebra Questions 16–30 – SSC & CAT Practice

Q16. Let \(x = \sqrt[6]{27} - \sqrt{6\frac{3}{4}}\) and \(y = \frac{\sqrt{45} + \sqrt{605} + \sqrt{245}}{\sqrt{80} + \sqrt{125}}\), then the value of \(x^2 + y^2\) is:

  • (a) 223/36
  • (b) 221/36
  • (c) 221/9
  • (d) 227/9
🔽 Show Answer & Video

Answer: 223

🎥 Video Solution: Coming soon

Q17. If \(x\) is real and \(x^4 - 5x^2 - 1 = 0\), then the value of \[ x^6 - 3x^2 + \frac{3}{x^2} - \frac{1}{x^6} + 1 \] is:

  • (a) 126
  • (b) 110
  • (c) 116
  • (d) 96
🔽 Show Answer & Video

Answer: 126

🎥 Video Solution: Coming soon

Q18. If \(3^\sqrt[4]{x} + 4^\sqrt[4]{x} = 5^\sqrt[4]{x}\), then the value of \(x\) is:

  • (a) 4
  • (b) 2
  • (c) 8
  • (d) 16
🔽 Show Answer & Video

Answer: 16

🎥 Video Solution: Coming soon

Q19. If \(\sqrt{x} + \frac{1}{\sqrt{x}} = \sqrt{7}\), then \(x^3 + \frac{1}{x^3}\) is equal to:

  • (a) 140
  • (b) 130
  • (c) 120
  • (d) 110
🔽 Show Answer & Video

Answer: 110

🎥 Video Solution: Coming soon

Q20. If roots of \(x^2 - 4x + a = 0\) are equal, then \(a =\):

  • (a) -4
  • (b) 4
  • (c) 8
  • (d) -8
🔽 Show Answer & Video

Answer: 4

🎥 Video Solution: Coming soon

Q21. If \(x + y = 7\) and \(xy = 10\), then the value of \(\frac{1}{x^3} + \frac{1}{y^3}\) is:

  • (a) 0.543
  • (b) 0.131
  • (c) 0.133
  • (d) 0.453
🔽 Show Answer & Video

Answer: 0.133

🎥 Video Solution: Coming soon

Q22. If \(x \ne -1, 2, 5\), then the simplified value of \[ \left\{ \frac{2(x^3 - 8)}{x^2 - x - 2} \times \frac{x^2 + 2x + 1}{x^2 - 4x - 5} \right\} \div \frac{x^2 + 2x + 4}{3x - 15} \] is equal to:

  • (a) \(\frac{1}{6}\)
  • (b) 6
  • (c) \(\frac{3}{2}\)
  • (d) \(\frac{2}{3}\)
🔽 Show Answer & Video

Answer: 6

🎥 Video Solution: Coming soon

Q23. If \(5^\sqrt[4]{x} + 12^\sqrt[4]{x} = 13^\sqrt[4]{x}\), then the value of \(x\) is:

  • (a) 2
  • (b) 8
  • (c) 1
  • (d) 4
🔽 Show Answer & Video

Answer: 8

🎥 Video Solution: Coming soon

Q24. If \(x = 2 - \sqrt{3}\), then the value of \[ x^3 - x^{-3} \] is:

  • (a) \(-30\sqrt{3}\)
  • (b) \(30\sqrt{3}\)
  • (c) \(-30\sqrt{2}\)
  • (d) \(30\sqrt{2}\)
🔽 Show Answer & Video

Answer: \(-30\sqrt{3}\)

🎥 Video Solution: Coming soon

Q25. The value of the expression \[ \frac{1}{4} \left\{ \left(a + \frac{1}{a} \right)^2 - \left(a - \frac{1}{a} \right)^2 \right\} \] is:

  • (a) \(\frac{1}{2}\)
  • (b) \(\frac{1}{4}\)
  • (c) 1
  • (d) 4
🔽 Show Answer & Video

Answer: 1

🎥 Video Solution: Coming soon

Q26. If \[ (x + y)^{\frac{1}{3}} + (z + y)^{\frac{1}{3}} = -(x + z)^{\frac{1}{3}}, \] then \[ x^3 + y^3 + z^3 \] can be expressed as:

  • (a) \(\frac{1}{8}xyz\)
  • (b) \((x + y)(y + z)(z + x)\)
  • (c) \(\frac{3}{8}(x + y)(y + z)(z + x)\)
  • (d) \(3xyz\)
🔽 Show Answer & Video

Answer: (c) \(\frac{3}{8}(x + y)(y + z)(z + x)\)

🎥 Video Solution: Coming soon

Q27. If \((a + b + 4)(ab + 4(a + b)) - 4ab = 0\), \(a \ne -4\), \(b \ne -4\), then \[ \left\{ \frac{1}{(a + b + 4)^{117^{-2^{-234}}}} \right\} \] is equal to:

  • (a) \(\frac{1}{4^{117}}\)
  • (b) \(\frac{1}{2^{117}}\)
  • (c) -\(\frac{1}{2^{234}}\)
  • (d) 0
🔽 Show Answer & Video

Answer: \(\frac{1}{2^{234}}\)

🎥 Video Solution: Coming soon

Q28. If \(a = \sqrt{8} - \sqrt{7}\) and \(a = \frac{1}{b}\), then the value of \[ \frac{a^2 + b^2 - 3ab}{a^2 + ab + b^2} \] is:

  • (a) \(\frac{27}{31}\)
  • (b) \(\frac{27}{32}\)
  • (c) \(\frac{29}{33}\)
  • (d) \(\frac{29}{31}\)
🔽 Show Answer & Video

Answer: \(\frac{27}{31}\)

🎥 Video Solution: Coming soon

Q29. If (\(5\sqrt5 *x^3 - 81\sqrt3*{y^3}) ÷ (\sqrt{5}*x - 3\sqrt3*y) = A x^2 + B y^2 + C xy\), then the value of \((6A + B - \sqrt{15}C)\) is:

  • (a) 10
  • (b) 9
  • (c) 15
  • (d) 12
🔽 Show Answer & Video

Answer: 12

🎥 Video Solution: Coming soon

Q30. If \(x + y + z = 19\), \(x^2 + y^2 + z^2 = 133\), and \(xz = y^2\), then the difference between \(z\) and \(x\) is:

  • (a) 5
  • (b) 3
  • (c) 6
  • (d) 4
🔽 Show Answer & Video

Answer: 6

🎥 Video Solution: Coming soon