Logarithmic Equality: a^{log_x b} = b^{log_x a} | AzuCATion
October 27, 2024 2025-10-28 2:11Logarithmic Equality: a^{log_x b} = b^{log_x a} | AzuCATion
Logarithmic Equality — \(a^{\log_x b}=b^{\log_x a}\)
CAT • XAT • ~5–7 min
🧩 Concept Explanation
When two numbers \(a\) and \(b\) are raised to powers involving logarithms with the same base \(x\), they satisfy a useful identity that lets you swap the base and the argument.
🧮 Formula(s)
\[ a^{\log_x b} \;=\; b^{\log_x a} \]
Proof idea. Let \( \log_x a=p \) and \( \log_x b=q \Rightarrow a=x^{p},\, b=x^{q}\). Then \( a^{\log_x b}=(x^{p})^{q}=x^{pq}\) and \( b^{\log_x a}=(x^{q})^{p}=x^{qp}=x^{pq}\), hence equal.
❓ Example Question
Find the value of \(4^{\log_{16} 25}\).
✅ Solution / Shortcut
Using \(a^{\log_x b}=b^{\log_x a}\):
\[ 4^{\log_{16} 25} \;=\; 25^{\log_{16} 4}. \]
Now \( \log_{16}4=\log_{16}\!\left(16^{1/2}\right)=\tfrac{1}{2}\). Hence,
\[ 4^{\log_{16}25}=25^{1/2}=\sqrt{25}=5. \]
📝 Quick Quiz
Evaluate: \(27^{\log_{3} 2}\)