FGP Trick: Fibonacci over Powers
October 27, 2024 2025-10-28 2:08FGP Trick: Fibonacci over Powers
Fibonacci over Powers (FGP) — Multiply–Shift Trick
CAT • XAT • ~6–8 min
FGP
Geometric + Fibonacci
Shortcut + Proof
🧩 Concept
Consider \(N=\dfrac{1}{3}+\dfrac{1}{3^{2}}+\dfrac{2}{3^{3}}+\dfrac{3}{3^{4}}+\dfrac{5}{3^{5}}+\dots\) where numerators follow Fibonacci \(1,1,2,3,5,\dots\).
Goal: compute \(15N\) lightning-fast.
⚡ Shortcut (multiply & add)
- Write \(N\) and \(3N\):
\(N=\frac{1}{3}+\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+\cdots\)
\(3N=1+\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\cdots\) - Multiply again: \(9N=3+1+\frac{2}{3}+\frac{3}{3^2}+\cdots\)
- After constants, each numerator matches the sum of the previous two ⇒ the tail of \(9N\) equals \((N+3N)\).
Hence \(9N=3+(N+3N)\Rightarrow 5N=3\Rightarrow N=\dfrac{3}{5}\) ⇒ \(15N=9\).
📐 Generator Check (1 line)
Since \( \sum_{n\ge1}F_n x^n=\dfrac{x}{1-x-x^2}\), take \(x=\tfrac13\): \(N=\dfrac{\tfrac13}{1-\tfrac13-\tfrac19}=\dfrac{3}{5}\) (confirms the shortcut).
🧪 Base-4 Variant
Evaluate \(S=\dfrac{1}{4^{2}}+\dfrac{1}{4^{3}}+\dfrac{2}{4^{4}}+\dfrac{3}{4^{5}}+\cdots\).
Let \(T=\sum_{n\ge1}\dfrac{F_n}{4^n}=\dfrac{\tfrac14}{1-\tfrac14-\tfrac1{16}}=\dfrac{4}{11}\). Then \(S=\dfrac14 T=\dfrac{1}{11}\).
📝 Quick Quiz
Let \(N'=\dfrac{1}{4}+\dfrac{1}{4^{2}}+\dfrac{2}{4^{3}}+\dfrac{3}{4^{4}}+\cdots\) (Fibonacci over powers of 4). What is \(11N'\)?
🎥 Video Walkthrough
© AzuCATion | Maths by Amiya — Free CAT concepts library