Counting Solutions of 1/m ± 1/n = 1/k (TNF Trick)
October 28, 2024 2025-10-28 8:11Counting Solutions of 1/m ± 1/n = 1/k (TNF Trick)
Counting Solutions of \(1/m \pm 1/n = 1/k\) using TNF\((k^2)\)
CAT • XAT • ~6–8 min
📘 One-line factorisation
Here \(\mathrm{TNF}(N)\) means “total number of factors of \(N\)” (ordered divisor-pair counting uses these factors naturally).
🧮 Counting formulas (TNF trick)
- Total integral solutions (both cases): \(\;2\cdot \mathrm{TNF}(k^2)-1\).
- For \(\frac1m+\frac1n=\frac1k\):
- Positive integral solutions \(=\ \mathrm{TNF}(k^2)\).
- Negative integral solutions \(=\ 0\).
- “One + & one −” \(=\) Total − Positive.
- For \(\frac1m-\frac1n=\frac1k\):
- Positive integral solutions \(=\ \dfrac{\mathrm{TNF}(k^2)-1}{2}\).
- Negative integral solutions \(=\ \dfrac{\mathrm{TNF}(k^2)-1}{2}\).
- “One + & one −” \(=\) Total − \(2\times\)Positive.
If \(k=\prod p_i^{a_i}\), then \(\ \mathrm{TNF}(k^2)=\prod (2a_i+1)\).
🧠 Why TNF\((k^2)\) appears (proof sketch)
Plus case
\((m+n)/mn=1/k \Rightarrow mk+nk=mn \Rightarrow (m-k)(n-k)=k^2\). For each ordered factor pair \(d\cdot e=k^2\), set \(m=d+k,\ n=e+k\). Positive pairs \((d,e>0)\) give all-positive solutions ⇒ count \(=\mathrm{TNF}(k^2)\). Including negative factors yields total \(=2\mathrm{TNF}(k^2)-1\) (central pair double-count removed).
Minus case
\((n-m)/mn=1/k \Rightarrow kn-km=mn \Rightarrow (m-k)(n+k)=-k^2\). Take \(d\cdot e=-k^2\) and set \(m=d+k,\ n=e-k\). The negative product splits evenly ⇒ positive solutions \(=(\mathrm{TNF}-1)/2\), same for negative.
✅ Worked examples
- \(\frac1m+\frac1n=\frac1{12}\): \(12=2^2\cdot3\Rightarrow \mathrm{TNF}(12^2)=(5)(3)=15\). Positive \(=15\), Total \(=2\cdot15-1=29\), One \(+\)/One \(−\) \(=29-15=14\).
- \(\frac1m-\frac1n=\frac1{20}\): \(20=2^2\cdot5\Rightarrow \mathrm{TNF}(20^2)=(5)(3)=15\). Positive \(=(15-1)/2=7\), Negative \(=7\), Total \(=29\), One \(+\)/One \(−\) \(=29-14=15\).
🗂️ 60-second exam playbook
- Prime-factorise \(k\). Compute \(\mathrm{TNF}(k^2)=\prod(2a_i+1)\).
- Pick case:
- Plus: Total \(=2\mathrm{TNF}-1\), Positive \(=\mathrm{TNF}\), Negative \(=0\), Mixed \(=\) Total − Positive.
- Minus: Positive \(=(\mathrm{TNF}-1)/2\), Negative \(=(\mathrm{TNF}-1)/2\), Total \(=2\mathrm{TNF}-1\), Mixed \(=\) Total − \(2\cdot\)Positive.
- To construct an actual pair, use the factorisations above.
⚠️ Edge cases & notes
- \(k>0\) integer is assumed. \(k=0\) is invalid for integer \(m,n\).
- When the question restricts \(m,n>0\), use the “Positive” counts only.
- Counts are for ordered pairs \((m,n)\) (swap usually gives a new solution unless \(m=n\)).
📝 Quick Quiz
How many positive solutions does \(\frac1m+\frac1n=\frac1{84}\) have?