SCRA 2012 — Find k from 3^49(x+iy) = (3/2 + i√3/2)^100
October 29, 2024 2025-10-30 12:49SCRA 2012 — Find k from 3^49(x+iy) = (3/2 + i√3/2)^100
SCRA 2012 — Find \(k\) (Complex Numbers, De Moivre)
Given below equation; solve for \(k\).
\[ 3^{49}(x+iy)=\left(\tfrac{3}{2}+i\tfrac{\sqrt{3}}{2}\right)^{100},\qquad x=ky \]
🧩 Problem & Options
Find \(k\) if \(3^{49}(x+iy)=\left(\tfrac{3}{2}+i\tfrac{\sqrt3}{2}\right)^{100}\) and \(x=ky\).
Options: (a) \(-\tfrac13\) (b) \(\sqrt3\) (c) \(-\sqrt3\) (d) \(-\tfrac{1}{\sqrt3}\)
✅ Final Answer
\( \boxed{k=-\tfrac{1}{\sqrt3}} \) (Option d)
🧠 Solution — Polar Form + De Moivre
1) Extract the unit-modulus factor
\(\displaystyle \frac{3}{2}+i\frac{\sqrt3}{2} =3\Big(\frac{\sqrt3}{2}+i\frac12\Big) =3\big(\cos\tfrac{\pi}{6}+i\sin\tfrac{\pi}{6}\big).\)
\[ \left(\tfrac{3}{2}+i\tfrac{\sqrt3}{2}\right)^{100} =3^{100}\!\left(\cos\tfrac{\pi}{6}+i\sin\tfrac{\pi}{6}\right)^{100} =3^{100}\!\left(\cos\tfrac{50\pi}{3}+i\sin\tfrac{50\pi}{3}\right). \]
Since \(\tfrac{50\pi}{3}=16\pi+\tfrac{2\pi}{3}\), we get \(\cos\tfrac{50\pi}{3}+i\sin\tfrac{50\pi}{3} =-\tfrac12+i\tfrac{\sqrt3}{2}\).
2) Equate both sides and use \(x=ky\)
\[ 3^{49}(k+ i)y = 3^{100}\!\left(-\tfrac12 + i\tfrac{\sqrt3}{2}\right) \;\Rightarrow\; (k+i)y = 3\!\left(-\tfrac12 + i\tfrac{\sqrt3}{2}\right). \]
3) Compare real/imaginary parts
\[ \text{Re: } ky=-\tfrac{3}{2}, \qquad \text{Im: } y=\tfrac{3\sqrt3}{2} \;\Rightarrow\; k=\frac{-\tfrac{3}{2}}{\tfrac{3\sqrt3}{2}}=-\frac{1}{\sqrt3}. \]
⚠️ Pitfalls
- Forgetting to reduce \( \tfrac{50\pi}{3} \) modulo \(2\pi\) to \( \tfrac{2\pi}{3} \).
- Not substituting \(x=ky\) early; it makes equating parts trivial.
- Confusing \( \tfrac{3}{2}+i\tfrac{\sqrt3}{2} \) with the unit vector; factor the \(3\) first.
📝 Quick Check