Are You Interested in Online or Offline Learning and Counselling? Contact Us: 990 5050 159 | 700 41 500 94

Geometric Sequence with Middle Term 720 – Least b

Geometric Sequence with Middle Term 720 – Least b

Geometric Sequence with Middle Term 720 – Least b | AzuCATion

Geometric sequence with middle term \(720\) – find least \(b\)

“If \(a, 720, b\) are the first 3 terms of a GP and \(a < 720 < b\), what is the sum of digits of the least possible \(b\)?” This is the classic AMC idea: in a GP, middle term squared = product of first and third.

GP basics Factor 720² Choose least bigger term

🧭 Problem (AMC-style)

The first three terms of a geometric sequence are integers \(a, 720, b\), where \(a < 720 < b\). What is the sum of the digits of the least possible value of \(b\)?

(A) 9   (B) 12   (C) 16   (D) 18   (E) 21

1️⃣ Key GP fact: middle term squared = product

For three consecutive terms in a geometric progression: \(a, ar, ar^2\).

Here \(a = a\), middle term \(= 720\), third term \(= b\). So we can write:

\[ 720^2 = a \cdot b \]

That’s all the algebra we need. Every valid pair \((a,b)\) of positive integers with \(a < 720 < b\) must satisfy this product condition.

Intuition: In a GP, the middle term is the geometric mean of the first and third: \(720 = \sqrt{ab}\) ⇒ \(ab = 720^2\).

2️⃣ Factor \(720^2\)

First factor 720:

\[ 720 = 2^4 \cdot 3^2 \cdot 5 \]

So

\[ 720^2 = (2^4 \cdot 3^2 \cdot 5)^2 = 2^8 \cdot 3^4 \cdot 5^2. \]

Every divisor of \(720^2\) can be a candidate for \(a\), and the corresponding \(b\) will be

\[ b = \frac{720^2}{a}. \]

But we must maintain the order: \(a < 720 < b\). So we only look at factor pairs \((a,b)\) such that:

  • \(a\) is a divisor of \(720^2\)
  • \(a < 720\)
  • \(b = 720^2 / a > 720\)

3️⃣ How to get the least possible \(b\)

Notice something: \(b = \dfrac{720^2}{a}\).

If \(a\) is small → \(b\) is very large. If \(a\) is big (but still < 720) → \(b\) becomes smaller.

So, to minimise \(b\), we should pick \(a\) as large as we can, but still < 720, and still a divisor of \(720^2\).

So: largest divisor of \(720^2\) that is less than 720.

Since \(720\) itself divides \(720^2\), let’s try numbers just below or at 720 that divide \(720^2\):

  • \(720\) divides \(720^2\) → gives \(b = 720\) (but we need \(b > 720\)), so skip.
  • Next, look at numbers very close to 720 that are factors of \(720^2\). One such neat number is \(675\): it divides \(720^2\).

Check with the official solution idea: they found that \(a = 675\) and \(b = 768\) works.

Let’s verify:

\[ a \cdot b = 675 \times 768 = 720^2. \]

So \(b = 768\) is indeed a valid third term > 720. Can there be a smaller one > 720? From the AMC notes: “we can test multiples of 5 in between … none of them divide \(720^2\) except 720 itself”, so 768 is the least working \(b\).

A fast way: observe \(2^8 = 256\) and \(256 \times 3 = 768\), which is close to 720 and divides the prime-power form nicely.

4️⃣ Finish: sum of digits

We got the least possible \(b\) = \(768\).

Sum of digits \(= 7 + 6 + 8 = 21\).

Correct option: (E) 21

🧠 Why exactly \(ab = 720^2\)? (layman check)

In a GP: first term \(= a\), second term \(= ar\), third term \(= ar^2\). Here \(ar = 720\), so \(r = 720/a\). Then third term is

\[ ar^2 = a \left(\frac{720}{a}\right)^2 = a \cdot \frac{720^2}{a^2} = \frac{720^2}{a}. \]

But the third term is also given as \(b\). So \(b = \dfrac{720^2}{a}\) ⇒ \(ab = 720^2\). That’s the identity we used above.

📝 Quick Quiz

If the first three terms of a GP are \(a, 60, b\) with \(a < 60 < b\), which of the following is always true?

🧪 Extra Practice

Suppose \(a, 720, b\) is a GP again, but now you got \(b = 900\). What is \(a\)?

© AzuCATion | Maths by Amiya — AMC → CAT geometry & algebra conversions.

casibom-casibom-casibom-sweet bonanza-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-deneme bonusu veren siteler-deneme bonusu veren siteler-bahis siteleri-bahis siteleri-güvenilir bahis siteleri-aviator-sweet bonanza-slot siteleri-slot siteleri-slot siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-bahis siteleri-casino siteleri-deneme bonusu-sweet bonanza-deneme bonusu veren siteler-deneme bonusu veren yeni siteler-güvenilir bahis siteleri-güvenilir casino siteleri-lisanslı casino siteleri-slot siteleri-yeni slot siteleri-aviator-bahis siteleri-casino siteleri-deneme bonusu veren siteler-deneme bonusu-deneme bonusu veren yeni siteler-güvenilir bahis siteleri-güvenilir casino siteleri-slot siteleri-lisanslı casino siteleri-yeni slot siteleri-casibom-grandpashabet-grandpashabet-aviator-aviator-aviator-aviator-aviator-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-deneme bonusu-deneme bonusu veren yeni siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-bahis siteleri-bahis siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-casino siteleri-casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-lisanslı casino siteleri-slot siteleri-slot siteleri-slot siteleri-yeni slot siteleri-yeni slot siteleri-