Cheat Codes: x + 1/x, x – 1/x & Their Powers

x ± 1/x & Powers — One-Page Cheat Code | AzuCATion
Algebra CAT · XAT 4–7 min High-Yield

x ± \( \dfrac{1}{x} \) & Powers — One-Page Cheat Code

Master \(x\pm\frac{1}{x}\), \(ax\pm\frac{b}{x}\), and the trig link \(x+\frac{1}{x}=2\cos\theta\). Use a single-variable recurrence to jump to any power fast.

1) Big Idea

Define \(T_n=x^n+\dfrac{1}{x^n}\). If \(x+\dfrac{1}{x}=k\), then \[ T_0=2,\quad T_1=k,\quad \boxed{T_n=k\,T_{n-1}-T_{n-2}}\ (n\ge2). \] So every \(T_n\) is a polynomial in \(k\) — no need to find \(x\).
Cheat: Memorise \(T_n=kT_{n-1}-T_{n-2}\). That’s 90% of the game.

2) When \(x+\dfrac{1}{x}=k\)

Must-know powers (up to 7th)

\[ x^2+\frac{1}{x^2}=k^2-2,\quad x^3+\frac{1}{x^3}=k^3-3k,\quad x^4+\frac{1}{x^4}=k^4-4k^2+2, \] \[ \boxed{x^5+\frac{1}{x^5}=k^5-5k^3+5k}, \] \[ \boxed{x^7+\frac{1}{x^7}=k^7-7k^5+14k^3-7k}. \]

Build from lower powers (handy in options)

\[ \boxed{\,x^5+\frac{1}{x^5}=\Big(x^2+\frac{1}{x^2}\Big)\Big(x^3+\frac{1}{x^3}\Big)-\Big(x+\frac{1}{x}\Big)\,}, \] \[ \boxed{\,x^7+\frac{1}{x^7}=\Big(x^3+\frac{1}{x^3}\Big)\Big(x^4+\frac{1}{x^4}\Big)-\Big(x+\frac{1}{x}\Big)\,}. \]

These let you avoid computing huge polynomials when the paper already gives you \(x\pm \tfrac{1}{x}\), \(x^2\pm \tfrac{1}{x^2}\), \(x^3\pm \tfrac{1}{x^3}\), etc.


Connect to minus form

\[ (x+\tfrac{1}{x})^2-(x-\tfrac{1}{x})^2=4 \Rightarrow (x-\tfrac{1}{x})^2=k^2-4 \Rightarrow \boxed{x-\tfrac{1}{x}=\pm\sqrt{k^2-4}}. \]

Choose sign using any given info about \(x\) (e.g., positivity, quadrant in trig form).

3) When \(x-\dfrac{1}{x}=k\)

Key identities (up to 7th)

\[ x^2+\frac{1}{x^2}=k^2+2,\quad x^3-\frac{1}{x^3}=k^3+3k,\quad x^4+\frac{1}{x^4}=k^4+4k^2+2, \] \[ \boxed{x^5-\frac{1}{x^5}=k^5+5k^3+5k}, \] \[ \boxed{x^7-\frac{1}{x^7}=k^7+7k^5+14k^3+7k}. \]

Back to plus form

\[ (x+\tfrac{1}{x})^2=x^2+\tfrac{1}{x^2}+2=(k^2+2)+2=k^2+4 \Rightarrow \boxed{x+\tfrac{1}{x}=\pm\sqrt{k^2+4}}. \]

4) General: \(ax\pm\dfrac{b}{x}=k\) (scale to standard)

Use the scaling \(y=\sqrt{\tfrac{a}{b}}\,x\Rightarrow ax\pm \dfrac{b}{x}=\sqrt{ab}\!\left(y\pm \dfrac{1}{y}\right)\).

If \(ax+\dfrac{b}{x}=k\), then \[ \boxed{y+\frac{1}{y}=\frac{k}{\sqrt{ab}}}\quad\text{with }y=\sqrt{\tfrac{a}{b}}\,x. \] If \(ax-\dfrac{b}{x}=k\), then \[ \boxed{y-\frac{1}{y}=\frac{k}{\sqrt{ab}}}. \]

Apply Sections 2–3 with \(k\to \dfrac{k}{\sqrt{ab}}\), then convert back if the question demands \(x\).

6) Cheat Codes at a Glance

Given Key outcomes (single-variable)
\(x+\dfrac{1}{x}=k\) \(x^2+\dfrac{1}{x^2}=k^2-2\),;

\(x^3+\dfrac{1}{x^3}=k^3-3k\),;

\(x^4+\dfrac{1}{x^4}=k^4-4k^2+2\),;

\(x^5+\dfrac{1}{x^5}=k^5-5k^3+5k\),;

\(x^7+\dfrac{1}{x^7}=k^7-7k^5+14k^3-7k\).

Also: \(x^5+\dfrac{1}{x^5}=(x^2+\dfrac{1}{x^2})(x^3+\dfrac{1}{x^3})-(x+\dfrac{1}{x})\);

\(x^7+\dfrac{1}{x^7}=(x^3+\dfrac{1}{x^3})(x^4+\dfrac{1}{x^4})-(x+\dfrac{1}{x})\).

Recurrence: \(T_n=kT_{n-1}-T_{n-2}\).
\(x-\dfrac{1}{x}=k\) \(x^2+\dfrac{1}{x^2}=k^2+2\),;

\(x^3-\dfrac{1}{x^3}=k^3+3k\),;

\(x^4+\dfrac{1}{x^4}=k^4+4k^2+2\),;

\(x^5-\dfrac{1}{x^5}=k^5+5k^3+5k\),;

\(x^7-\dfrac{1}{x^7}=k^7+7k^5+14k^3+7k\).
\(ax+\dfrac{b}{x}=k\) Let \(y=\sqrt{\tfrac{a}{b}}x\Rightarrow y+\dfrac{1}{y}=\dfrac{k}{\sqrt{ab}}\). Apply the first row to \(y\).
\(ax-\dfrac{b}{x}=k\) Let \(y=\sqrt{\tfrac{a}{b}}x\Rightarrow y-\dfrac{1}{y}=\dfrac{k}{\sqrt{ab}}\). Apply the second row to \(y\).
\(x+\dfrac{1}{x}=2\cos\theta\) \(x^n+\dfrac{1}{x^n}=2\cos(n\theta)\) (clean power jumps).

7) Quick Drill (CAT-style)

Q1. If \(x+\dfrac{1}{x}=5\), find \(x^5+\dfrac{1}{x^5}\). \[ x^5+\frac{1}{x^5}=k^5-5k^3+5k=3125-625+25=\boxed{2525}. \]
Q2. If \(x-\dfrac{1}{x}=3\), find \(x^5-\dfrac{1}{x^5}\). \[ x^5-\frac{1}{x^5}=k^5+5k^3+5k=243+135+15=\boxed{393}. \]
Q3. If \(x+\dfrac{1}{x}=3\), compute \(x^7+\dfrac{1}{x^7}\). \[ x^7+\frac{1}{x^7}=k^7-7k^5+14k^3-7k =2187-7(243)+14(27)-21=\boxed{843}. \]
Q4. If \(x-\dfrac{1}{x}=2\), compute \(x^7-\dfrac{1}{x^7}\). \[ x^7-\frac{1}{x^7}=k^7+7k^5+14k^3+7k =128+7(32)+14(8)+14=\boxed{478}. \]

© AzuCATion — “Think CAT, Think AzuCATion.”