CAT 2025 Slot1 Quant: A cafeteria offers 5 types of sandwiches.
February 20, 2026 2026-02-20 21:57CAT 2025 Slot1 Quant: A cafeteria offers 5 types of sandwiches.
Ways = (Types) $\times$ (Breads) $\times$ (Sizes) $\times$ (Sauce Combinations)
Ways = $5 \times 4 \times 2 \times [^6C_0 + ^6C_1 + ^6C_2]$
Ways = $40 \times [1 + 6 + 15] = 40 \times 22 = \mathbf{880}$.
Detailed Step-by-Step Solution
Step 1: Identify the Independent Choices
The order consists of four independent parts: Sandwich Type, Bread Type, Size, and Sauces.
- Sandwich Types: 5 options
- Bread Types: 4 options
- Sizes: 2 options (Small or Large)
Step 2: Calculate Sauce Combinations
The customer can add "up to 2" sauces from 6 available. This means they can choose 0, 1, or 2 sauces:
* 0 Sauces: $^6C_0 = 1$ way
* 1 Sauce: $^6C_1 = 6$ ways
* 2 Sauces: $^6C_2 = \frac{6 \times 5}{2 \times 1} = 15$ ways
Total Sauce combinations = $1 + 6 + 15 = 22$.
Step 3: Apply the Fundamental Principle of Counting
Total different ways = $5 \times 4 \times 2 \times 22$
Total = $40 \times 22 = \mathbf{880}$.
Challenge a Peer:
🚀 Explore More P&C Practice QuestionsMaster CAT concepts with AzuCATion — Logic over Formulas.