Are You Interested in Online or Offline Learning and Counselling? Contact Us: 990 5050 159 | 700 41 500 94

Greatest M so that M+1213 and M+3773 are perfect squares

Greatest M so that M+1213 and M+3773 are perfect squares

Greatest M so that M+1213 and M+3773 are perfect squares | AzuCATion

Greatest \(M\) so that \(M+1213\) and \(M+3773\) are perfect squares

Nice AMC-style algebra/number-theory mix. We make both expressions squares, subtract, factor 2560, choose the “widest” factor pair, and finish with a units-digit check.

Difference of Squares Maximisation Last Digit Check

🧭 Problem (AMC credit)

Let \(M\) be the greatest integer such that both \(M + 1213\) and \(M + 3773\) are perfect squares. What is the units digit of \(M\)?

(A) 1   (B) 2   (C) 3   (D) 6   (E) 8

1️⃣ Assume both are squares

Let

\[ M + 1213 = P^2,\quad M + 3773 = Q^2 \]

for some positive integers \(P,Q\) with \(Q > P\) (because \(M+3773 > M+1213\)).

Subtract the first from the second:

\[ (M+3773) - (M+1213) = Q^2 - P^2 \] \[ 2560 = (Q^2 - P^2) = (Q+P)(Q-P). \]

This is the key: the difference of the two squares is fixed at \(2560\). So we just have to split 2560 into two factors \(Q+P\) and \(Q-P\) of the same parity.

2️⃣ Parity + Maximising \(M\)

From

\[ Q+P = d,\quad Q-P = e,\quad de = 2560, \]

we get

\[ Q = \frac{d+e}{2},\quad P = \frac{d-e}{2}. \]

So \(d\) and \(e\) must be the same parity (both even) to keep \(P,Q\) integral. Since \(2560 = 2^8 \cdot 5\), a natural choice is to take them both even.

We need the greatest \(M\). But

\[ M = P^2 - 1213. \]

So to maximise \(M\), we maximise \(P\). And to maximise \(P = \tfrac{d-e}{2}\), we want:

  • \(d = Q+P\) as large as possible
  • \(e = Q-P\) as small as possible

Keep them even and factor \(2560\): the best choice is

\[ Q+P = 1280,\quad Q-P = 2. \]

This indeed multiplies to \(2560\) and both are even.

Now solve:

\[ Q = \frac{1280+2}{2} = 641,\qquad P = \frac{1280-2}{2} = 639. \]

3️⃣ Get \(M\)

Recall \(M + 1213 = P^2\). With \(P = 639\):

\[ M = 639^2 - 1213. \]

We don’t actually need the full number to answer the MCQ. We only need the units digit.

Compute the units digit:

  • Units digit of \(639^2\) is the same as units digit of \(9^2 = 81\) → units digit \(= 1\).
  • So \(M \equiv 1 - 3 \pmod{10}\) (because 1213 ends with 3).
  • \(1 - 3 \equiv -2 \equiv 8 \pmod{10}\).

Therefore, units digit of \(M\) is 8.

This matches the official solution method: first make it a difference of squares, then pick \((Q+P, Q-P) = (1280, 2)\).

📝 Quick Quiz

Suppose instead we had \(M+1000 = P^2\) and \(M+2600 = Q^2\). Then \(Q^2 - P^2 = 1600\). Which \((Q+P, Q-P)\) pair below will give the largest possible \(M\)?

© AzuCATion | Maths by Amiya — AMC→CAT conversion pages.

casibom-casibom-casibom-sweet bonanza-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-deneme bonusu veren siteler-deneme bonusu veren siteler-bahis siteleri-bahis siteleri-güvenilir bahis siteleri-aviator-sweet bonanza-slot siteleri-slot siteleri-slot siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-bahis siteleri-casino siteleri-deneme bonusu-sweet bonanza-deneme bonusu veren siteler-deneme bonusu veren yeni siteler-güvenilir bahis siteleri-güvenilir casino siteleri-lisanslı casino siteleri-slot siteleri-yeni slot siteleri-aviator-bahis siteleri-casino siteleri-deneme bonusu veren siteler-deneme bonusu-deneme bonusu veren yeni siteler-güvenilir bahis siteleri-güvenilir casino siteleri-slot siteleri-lisanslı casino siteleri-yeni slot siteleri-casibom-grandpashabet-grandpashabet-aviator-aviator-aviator-aviator-aviator-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-deneme bonusu-deneme bonusu veren yeni siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-bahis siteleri-bahis siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-casino siteleri-casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-lisanslı casino siteleri-slot siteleri-slot siteleri-slot siteleri-yeni slot siteleri-yeni slot siteleri-