Are You Interested in Online or Offline Learning and Counselling? Contact Us: 990 5050 159 | 700 41 500 94

Roots of x³ + 2x² − x + 3 – Evaluate (p²+4)(q²+4)(r²+4)

Roots of x³ + 2x² − x + 3 – Evaluate (p²+4)(q²+4)(r²+4)

Roots of \(x^3 + 2x^2 - x + 3\) – Evaluate \((p^2+4)(q^2+4)(r^2+4)\) | AzuCATion

\(x^3 + 2x^2 - x + 3 = 0\) → evaluate \((p^2+4)(q^2+4)(r^2+4)\)

Very AMC-ish expression-evaluation question. Two beautiful finishes: (1) use \(f(2i)f(-2i)\) in 10 seconds, (2) do a full Vieta expansion for students who like algebra. Final answer: 125.

Cubic → 3 roots Vieta’s Formula Complex plug-in trick

🧭 Problem

The roots of the cubic

\[ x^3 + 2x^2 - x + 3 = 0 \]

are \(p, q, r\). Find the value of

\[ (p^2 + 4)(q^2 + 4)(r^2 + 4). \]
(A) 64   (B) 75   (C) 100   (D) 125   (E) 144

1️⃣ Solution 1 — Complex plug-in \(f(2i)f(-2i)\)

Let \[ f(x) = x^3 + 2x^2 - x + 3 = (x-p)(x-q)(x-r). \]

Notice that \[ p^2 + 4 = p^2 - (-4) = (p-2i)(p+2i). \] Similarly for \(q\) and \(r\).

So the product becomes

\[ (p^2+4)(q^2+4)(r^2+4) = (p-2i)(p+2i)(q-2i)(q+2i)(r-2i)(r+2i) = f(2i)\,f(-2i). \]

Now just evaluate the polynomial at \(x = 2i\) and \(x = -2i\).

Compute \(f(2i)\)

\[ f(2i) = (2i)^3 + 2(2i)^2 - (2i) + 3 = 8i^3 + 8i^2 - 2i + 3. \] \[ i^2 = -1,\quad i^3 = -i \] \[ \Rightarrow f(2i) = 8(-i) + 8(-1) - 2i + 3 = -8i - 8 - 2i + 3 = -10i - 5. \]

Compute \(f(-2i)\)

\[ f(-2i) = (-2i)^3 + 2(-2i)^2 - (-2i) + 3 = -8i^3 + 8i^2 + 2i + 3. \] \[ = -8(-i) + 8(-1) + 2i + 3 = 8i - 8 + 2i + 3 = 10i - 5. \]

Multiply

\[ f(2i)f(-2i) = (-5 - 10i)(-5 + 10i) = (-5)^2 - (10i)^2 = 25 - 100i^2 = 25 - 100(-1) = 25 + 100 = 125. \]

Hence \[ (p^2+4)(q^2+4)(r^2+4) = 125, \] so the answer is (D) 125.

2️⃣ Solution 2 — Pure Vieta / symmetric-sum expansion

From \[ x^3 + 2x^2 - x + 3 = 0, \] by Vieta we have:

  • \(p + q + r = -2\) (negative of coeff. of \(x^2\))
  • \(pq + pr + qr = -1\) (coeff. of \(x\))
  • \(pqr = -3\) (negative of constant term)

We want \[ (p^2+4)(q^2+4)(r^2+4). \]

Expand step by step:

\[ (p^2+4)(q^2+4)(r^2+4) = p^2 q^2 r^2 + 4(p^2 q^2 + q^2 r^2 + r^2 p^2) + 4^2 (p^2 + q^2 + r^2) + 4^3. \]

Now express each symmetric piece:

1. \(p^2 q^2 r^2 = (pqr)^2 = (-3)^2 = 9.\)

2. \(p^2 q^2 + q^2 r^2 + r^2 p^2 = (pq + qr + rp)^2 - 2pqr(p+q+r).\)

\[ = (-1)^2 - 2(-3)(-2) = 1 - 12 = -11. \]

3. \(p^2 + q^2 + r^2 = (p+q+r)^2 - 2(pq+qr+rp).\)

\[ = (-2)^2 - 2(-1) = 4 + 2 = 6. \]

Substitute back

\[ (p^2+4)(q^2+4)(r^2+4) = 9 + 4(-11) + 16(6) + 64 = 9 - 44 + 96 + 64. \]
\[ 9 - 44 = -35,\quad -35 + 96 = 61,\quad 61 + 64 = 125. \]

Again we get 125.

This method is longer but fully algebraic — good for CAT mainsheet or if evaluator wants to see Vieta usage.

🧠 Why the complex trick is so powerful here

Whenever you see \((p^2 + \alpha^2)(q^2 + \alpha^2)(r^2 + \alpha^2)\) and \(p, q, r\) are roots of \(f(x)=0\), try to write \((x^2+\alpha^2) = (x-\alpha i)(x+\alpha i)\). Then the whole product becomes \(f(\alpha i)f(-\alpha i)\). Here \(\alpha = 2\), so answer is \(f(2i)f(-2i)\). 1 line.

📝 Quick Quiz

For the same cubic \(x^3 + 2x^2 - x + 3 = 0\), what is \((p^2 + 1)(q^2 + 1)(r^2 + 1)\)? (Hint: follow the same complex trick.)

© AzuCATion | Maths by Amiya — Cubic root-sum tricks for CAT & AMC pages.

casibom-casibom-casibom-sweet bonanza-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-aviator-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-bahis siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-casino siteleri-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-deneme bonusu veren yeni siteler-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-güvenilir bahis siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-yeni slot siteleri-deneme bonusu veren siteler-deneme bonusu veren siteler-bahis siteleri-bahis siteleri-güvenilir bahis siteleri-aviator-sweet bonanza-slot siteleri-slot siteleri-slot siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-lisanslı casino siteleri-bahis siteleri-casino siteleri-deneme bonusu-sweet bonanza-deneme bonusu veren siteler-deneme bonusu veren yeni siteler-güvenilir bahis siteleri-güvenilir casino siteleri-lisanslı casino siteleri-slot siteleri-yeni slot siteleri-aviator-bahis siteleri-casino siteleri-deneme bonusu veren siteler-deneme bonusu-deneme bonusu veren yeni siteler-güvenilir bahis siteleri-güvenilir casino siteleri-slot siteleri-lisanslı casino siteleri-yeni slot siteleri-casibom-grandpashabet-grandpashabet-aviator-aviator-aviator-aviator-aviator-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-sweet bonanza-deneme bonusu-deneme bonusu veren yeni siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-deneme bonusu veren siteler-bahis siteleri-bahis siteleri-güvenilir casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-casino siteleri-casino siteleri-güvenilir casino siteleri-güvenilir casino siteleri-lisanslı casino siteleri-slot siteleri-slot siteleri-slot siteleri-yeni slot siteleri-yeni slot siteleri-